
Signals and Systems - known past paper mistakes

Emilie d’Olne

April 30, 2024

Contents

2017 2
Question 1.(j)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2018 2
Question 2.(c)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Question 3.(b)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Question 3.(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2019 4
Question 1.(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Question 1.(g)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Question 2.(c)(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Question 2.(d)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2020 v1 5
Question 1.(b)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2020 v2 6
Question 1.(a)(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Question 1.(b)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Question 1.(g)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2020 v3 6
Question 1.(a)(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Question 3.(d)(iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2022 7
Question 1.(a)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Question 2.(c)(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Question 3.(c)(iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2023 9
Question 2.(c)(ii-iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Question 2.(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



2017

Question 1.(j)(ii)

A signal is described by x(t) = 84 sinc(84πt). Sketch the Fourier transform of x(t). Is a sampling
period of T = 0.01 s small enough for aliasing to be avoided? Justify your answer.
Mistake: Some versions of the correction have the wrong signal bandwidth.

Note: The definition of the sinc function here is assumed to be unnormalised, i.e. sinc(x) =
sin(x)

x
.

The standard in digital signal processing (and in this module) is to use the normalised sinc defined as

sinc(x) =
sin(πx)

πx
.

Remember from the slides that sinc(
ωs
2
t)

FT←−→ 2π

ωs
rect(

ω

ωs
). Thus, the signal x(t) = 84 sincu(84πt)

has Fourier transform X(jω) = rect( ω
168π ). The sketch of the Fourier transform is

−84π 84π

1

|H(jω)| ω

|X(jω)|

and the minimum sampling rate required to satisfy the Nyquist criterion is fs ≥ 2 · 42 = 84 Hz. Since a
sampling period of T = 0.01 s yields a sampling frequency of 100 Hz, there is no aliasing.

2018

Question 2.(c)(ii)

The output y(t) of a causal LTI system is related to the input x(t) by the differential equation

d2y(t)

dt
− dy(t)

dt
− 2y(t) = x(t) .

Let X(s) and Y (s) denote Laplace transforms of x(t) and y(t), respectively, and let H(s) denote
the Laplace transform of h(t), the system’s impulse response. (i) Determine H(s) as a ratio of
polynomials. (ii) Determine h(t) for each of the following cases

· The system is stable.

· The system is causal.

· The system is neither stable nor causal.

Mistake: incorrect coefficients in the final solution.

Part (i) gives

H(s) =
1

3

1

s− 2
− 1

3

1

s+ 1
.

For a stable system, the ROC must include the jω axis, thus

h(t) = −1

3
e2tu(−t)− 1

3
e−tu(t) .

For a causal system, both ROCs must be right-handed, thus

h(t) =
1

3
e2tu(t)− 1

3
e−tu(t) .
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For the system to be neither stable nor causal, choose either of

h(t) =
1

3
e2tu(t) +

1

3
e−tu(−t) ROC doesn’t exist!

h(t) = −1

3
e2tu(−t) +

1

3
e−tu(−t) .

Question 3.(b)(ii)

Consider the discrete signals x1[n] = 2n and x2[n] = 3n for n ≥ 0. Find their convolution using
their z-transforms and properties of convolution.

Mistake: the final ROC was incorrect.

Remember that the z-transform of x[n] = anu[n] is given by

X(z) =

∞∑
n=0

anz−n

=
1

1− az−1
if |az−1| < 1

=
z

z − a
if |z| > |a| .

Thus the convolution is obtained in the z-domain as

X1(z)X2(z) =
z

z − 2

z

z − 3
with |z| > 3 ∩ |z| > 2

= z
( z

z − 3
− z

z − 2

)
= z(

z

z − 3
− x1(0) + x1(0)− z

z − 2
)

= z
( z

z − 3
− x1(0)− z

z − 2
+ x2(0)

)
since x1(0) = x2(0)

= z
( z

z − 3
− x1(0)

)
− z
( z

z − 2
− x2(0)

)
with |z| > 3 .

Using results from part (i), this gives 3n+1u[n]− 2n+1u[n] in the time domain.

Question 3.(c)

Consider a LTI system with input x[n] and output y[n] related by the difference equation

2y[n]− 9y[n− 1] + 4y[n− 2] = −14x[n− 2] .

Investigate whether the above system can be both stable and causal. Justify your answer. Deter-
mine the impulse response and its z-transform in the following three cases

· the system is causal

· the system is stable

· the system is neither causal nor causal.

Use the fact that the z-transform z
z−a corresponds to the function anu[n] in discrete time if

|z| > |a| and the function −anu[−n− 1] if |z| < |a|.
Mistake: the input x[n−2] leads to a transfer function that does not contain z

z−a terms. Instead,
use x[n] as input.

The system can be written in the z-domain as

Y (z)[1− 3.5z−1 + 2z−2] = −7X(z) ,

giving the transfer function

H(z) =
−7

(1− 0.5z−1)(1− 4z−1)
=

1

1− 0.5z−1
− 8

1− 4z−1
=

z

z − 0.5
− 8

z

z − 4
.
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The system is causal

h[n] = (0.5)nu[n]− 8(4)nu[n], |z| > 4 .

The system is stable

h[n] = (0.5)nu[n] + 8(4)nu[−n− 1], 0.5 < |z| < 4 .

The system is netiher stable nor causal

h[n] = −(0.5)nu− [n− 1] + 8(4)nu[−n− 1], |z| < 0.5 .

There is no combination that allows the system to be both stable and causal.

2019

Question 1.(e)

The output of a continuous-time, LTI system is related to the input x(t) by the differential equation

dy(t)

dt
+ 2y(t) = 2x(t) .

Determine the frequency response of the system and sketch the asymptotic behaviour of its Bode
plots.

Mistake: Incorrect numerator in the Fourier Transform.

Applying the Fourier Transform on both sides gives

Y (ω)jω + 2Y (ω) = 2X(ω)

thus yielding the frequency response

H(ω) =
2

2 + jω
.

Question 1.(g)(ii)

Consider the discrete-time, causal LTI system with input x[n] and output y[n] related with the
difference equation

y[n]− 5

6
y[n− 1] +

1

6
y[n− 2] = x[n]− 1

2
x[n− 1] .

Find the analytical expression and the ROC of the z-transform of the output if x[n] = ( 1
2 )nu[n].

Mistake: the final ROC was incorrect.

From standard z-transforms we have

X(z) =
z

z − 1
2

and from part (i) we have

H(z) =
z

z − 1
3

.

Thus the z-transform of the output is

Y (z) =
z2

(z − 1
2 )(z − 1

3 )
ROC: |z| > 1

2
∩ |z| > 1

3
= |z| > 1

2
.
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Question 2.(c)(i)

Consider a continuous Linear Time-Invariant (LTI) system with input the signal x(t) = δ(t) (the
Dirac function) and output the signal y(t) = − 2

3e
2tu(−t) + 1

3e
−tu(t). Determine the transfer

function H(s) of the system and its Region of Convergence (ROC).

Mistake: The answer has a wrong coefficient ( 1
3 instead of 2

3).

Change the question so that the input is

y(t) = −1

3
e2tu(−t) +

1

3
e−tu(t),

and the answer is correct.

Question 2.(d)(ii)

The output y(t) of an LTI system is related to the input x(t) through the differential equation

d2y(t)

dt2
+
dy(t)

dt
− 2y(t) =

dx(t)

dt
+ 2x(t) .

Let X(s) and Y (s) denote the Laplace transforms of x(t) and y(t), respectively, and let H(s)
denote the Laplace transform of the system’s impulse response h(t).

· Determine H(s) as a ratio of two polynomials.

· Determine h(t) for each of the following cases

– The system is stable.

– The system is causal.

Mistake: The answer for a stable system was incorrect.

The system can be described in the Laplace domain as(
s2 + s− 2

)
Y (s) =

(
s+ 2

)
X(s)

giving H(s) as

H(s) =
Y (s)

X(s)
=

s+ 2

s2 + s− 2
=

s+ 2

(s+ 2)(s− 1)
=

1

s+ 1
.

The last step occurs through pole-zero cancellation. This is beyond the scope of this course, but the
analyticity of H(s) at s = 2 is defined by Riemann’s theorem on removable singularities.
For the system to be stable, the ROC must include the jω axis. Thus h(t) = −etu(−t) with ROC
<{s} < 1. For the system to be causal, the ROC must be to the right of the pole, thus h(t) = etu(t)
with ROC <{s} > 1.

2020 v1

Question 1.(b)(ii)

Consider the signal

x(t) =

{
1− 2t, 0 ≤ t ≤ 1

0, otherwise.

Sketch x(3t+ 5) and describe briefly in words how it can be derived from the original signal x(t).

Mistake: multiplication by 2 is missing in the answer.
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x(3t+ 5) =

{
1− 2(3t+ 5) = −9− 6t, 0 ≤ 3t+ 5 ≤ 1⇔ −5 ≤ 3t ≤ −4⇔ − 5

3 ≤ t ≤ −
4
3

0, otherwise.

2020 v2

Question 1.(a)(i)

Consider x(t) = | cos(2πt+π/6)|. Specify if the signal is causal/non causal, periodic/non-periodic,
odd/even.

Mistake: The answers states this signal is even, when it is neither even nor odd.

Non causal, periodic with period T = 0.5, neither even nor odd.

Question 1.(b)(ii)

Consider the signal

x(t) =

{
1− 3t, 0 ≤ t ≤ 1

0, otherwise.

Sketch x(3t+ 4) and describe briefly in words how it can be derived from the original signal x(t).

Mistake: multiplication by 3 is missing in the answer.

x(3t+ 4) =

{
1− 3(3t+ 4) = −11− 9t, 0 ≤ 3t+ 4 ≤ 1⇔ −4 ≤ 3t ≤ −3⇔ − 4

3 ≤ t ≤ −1

0, otherwise.

Question 1.(g)(ii)

Consider the discrete-time, causal LTI system with input x[n] and output y[n] related with the
difference equation

y[n]− 5

8
y[n− 1] +

1

16
y[n− 2] = x[n]− 1

8
x[n− 1] .

Find the analytical expression and the ROC of the z-transform of the output if x[n] = ( 1
4 )nu[n].

Mistake: the final ROC was incorrect.

From standard z-transforms we have

X(z) =
z

z − 1
4

and from part (i) we have

H(z) =
z

z − 1
2

.

Thus the z-transform of the output is

Y (z) =
z2

(z − 1
2 )(z − 1

4 )
ROC: |z| > 1

2
∩ |z| > 1

4
= |z| > 1

2
.

2020 v3
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Question 1.(a)(i)

Consider x(t) = | sin(2πt+ π
3 )|. Specify if the signal is causal/non causal, periodic/non-periodic,

odd/even.

Mistake: the answer said this signal is even, when it is neither even nor odd.

Non causal, periodic with period T = 0.5, neither even nor odd.

Question 3.(d)(iii)

Verify the results in part (d)(i) for the sequence u[n+ 2]− u[−n+ 2].

Mistake: wrong power of z in the first step.

Taking the z-transform of x[n] = u[n+ 2]− u[−n+ 2]

X(z) = z2 z

z − 1
− z−2 z−1

z−1 − 1

The expression for X(z−1) is

X(z−1) = z−2 z−1

z−1 − 1
− z2 z

z − 1

= −
(
z2 z

z − 1
− z−2 z−1

z−1 − 1

)
= −X(z)

Thus proving the results in (d)(i).

2022

Question 1.(a)(ii)

For the following continuous-time signal, state whether it is causal or non-causal, periodic or
nonperiodic, and even, odd, or non-symmetric. Give justifications for your statements. If periodic,
state the period

x(t) = cos3(3t+ π/2) .

Mistake: The signal is odd symmetric rather than non-symmetric.

The signal is non-causal, has a period T = 2π/3 and is odd symmetric.

Question 2.(c)(ii)

Consider a continuous time system with impulse response

h(t) = δ(t+ 2) + 2δ(t) .

The input signal to this system is

x(t) =


1, 0 ≤ t ≤ 1

2− t, 1 < t ≤ 3

0, t < 0 and t > 3 .

Find an expression for the output, y(t), of the system when the input is x(t).

Mistake: the answer gives the wrong expression for y(t).

7



The impulse response and the input to the system are given by

−2 −1

h(t)

t 1 3

1

−1

x(t)

t

The output of the system is given by the plots below.

y(t) = x(t) ∗ h(t)

=

∫ ∞
−∞

x(τ)h(t− τ)dτ .

For t < −2: There is no overlap between the two functions, thus y(t) is zero.

3t t+ 2

1
h(t− τ) x(t)

τ

1−2

1 y(t)
t

For −2 < t < −1: Only one δ function overlaps with x(τ), thus y(t) is given by

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

=

∫ ∞
−∞

δ(t+ 2− τ)x(τ)dτ

= x(t+ 2) for − 2 < t < −1

= x(τ) for 0 < τ < 1

= 1 .

3t t+ 2

1
h(t− τ) x(t)

τ

1−2 −1

1 y(t)
t

For −1 < t < −0: Only one δ function overlaps with x(τ), thus y(t) is given by

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

=

∫ ∞
−∞

δ(t+ 2− τ)x(τ)dτ

= x(t+ 2) for − 1 < t < 0

= x(τ) for 1 < τ < 2

= 2− τ = −t .

3t t+ 2

1
h(t− τ) x(t)

τ

1−2 −1

1 y(t)
t

For 0 < t < 1: Both δ functions overlaps with x(τ), thus y(t) is given by

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

=

∫ ∞
−∞

2δ(t− τ)x(τ) + δ(t+ 2− τ)x(τ)dτ
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= 2x(t) + x(t+ 2) for 0 < t < 1

= 2− t .

t t+ 2

1
h(t− τ) x(t)

τ

1−2 −1

1 y(t)
t

For 1 < t < 3: Only one δ function overlaps with x(τ), thus y(t) is given by

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

=

∫ ∞
−∞

2δ(t− τ)x(τ)

= 2x(t) for 1 < t < 3

= 4− 2t .

t t+ 2

1
h(t− τ) x(t)

τ
1−2 3−1

1 y(t)
t

For t > 3: There is no overlap between the two functions, thus y(t) is zero.

The output, y(t), should be

y(t) =



0, t < −2

1, −2 ≤ t < −1

−t, −1 ≤ t < 0

2− t, 0 ≤ t < 1

4− 2t, 1 ≤ t ≤ 3

0, t > 3 .

1−2 3−1

1 y(t)
t

Question 3.(c)(iv)

Consider a discrete-time LTI system with impulse response h[n] and system function H(z) with

h[n] =
[
1, 0.1,−0.12, 0.04

]
.

Find the magnitude and phase response of H(z) at normalized angular frequency π/2.

Mistake: there is a j term missing in the answer.

The system function is given by

H(z) = 1 + 0.1z−1 − 0.12z−2 + 0.04z−3 .

To evaluate the frequency response at normalized angular frequency Ω = π/2, let z = ejΩ = ejπ/2 = j.
Therefore,

H(j) = 1 + 0.1j−1 − 0.12j−2 + 0.04j−3

= 1− 0.1j + 0.12 + 0.04j = 1.12− 0.06j .

Giving a magnitude |H(j)| = 1.122 and a phase ∠H(j) = −0.053.

2023

9



Question 2.(c)(ii-iii)

The frequency response of a particular continuous-time system is

H(jω) =
10

jω + 10

and the input signal is x(t) = cos(4πt). When x(t) is used as the input signal, find the Fourier
representation of the output signal, and write it in the form A(R+ Ij) where A is a scalar, and R
and I are the real and imaginary terms respectively. Hence find the time domain output signal,
y(t).

Mistake: The A(R+ Ij) form and consequent solution are incorrect.

Using standard pairs, the Fourier representation of x(t) is given by

X(jω) = π(δ(ω − 4π) + δ(ω + 4π)).

The Fourier representation of the output is then given by

Y (jω) =
10π

jω + 10
(δ(ω − 4π) + δ(ω + 4π))

=
10π

ω2 + 100

(
10(δ(ω − 4π) + δ(ω + 4π))− jω(δ(ω − 4π) + δ(ω + 4π))

)
,

which satisfies the form required by question (ii). However, the inverse transform of such an expression
is not directly obvious. Instead, follow the below procedure.
The input is re-written as the sum of two pure frequency components

x(t) = cos(4πt) =
1

2
(ej4πt + e−j4πt).

The response of the system at frequencies ω = ±4π is obtained as

H(jω)|ω=4π =
10

4πj + 10
= |0.6227|∠−0.8986 rad,

H(jω)|ω=−4π =
10

−4πj + 10
= |0.6227|∠0.8986 rad,

meaning the output is obtained as

y(t) =
1

2
(ej4πt0.6227e−j0.8986 + e−j4πt0.6227ej0.8986)

=
1

2
0.6227(ej(4πt−0.8986) + e−j(4πt−0.8986))

= 0.6227 cos(4πt− 0.8986).

Question 2.(d)

Consider a continuous-time LTI system characterized by the system function H(s). When the
input signal to the system is x(t) = δ(t), the corresponding output signal is

y(t) =
2

3
e3tu(−t) +

2

3
e−tu(t).

Find H(s) and state the Region of Convergence.

Mistake: There is a sign issue in the solution for H(s), leading to a mistake being carried forward.

Change the question to use

y(t) = −2

3
e3tu(−t) +

2

3
e−tu(t),

and the solution in the mark scheme is correct.
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